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ABSTRACT We demonstrate use of iteratively pruned deep learning model ensembles for detecting
pulmonary manifestations of COVID-19 with chest X-rays. This disease is caused by the novel Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as the novel Coronavirus
(2019-nCoV). A custom convolutional neural network and a selection of ImageNet pretrained models are
trained and evaluated at patient-level on publicly available CXR collections to learn modality-specific
feature representations. The learned knowledge is transferred and fine-tuned to improve performance
and generalization in the related task of classifying CXRs as normal, showing bacterial pneumonia, or
COVID-19-viral abnormalities. The best performing models are iteratively pruned to reduce complexity and
improve memory efficiency. The predictions of the best-performing pruned models are combined through
different ensemble strategies to improve classification performance. Empirical evaluations demonstrate that
the weighted average of the best-performing pruned models significantly improves performance resulting in
an accuracy of 99.01% and area under the curve of 0.9972 in detecting COVID-19 findings on CXRs. The
combined use of modality-specific knowledge transfer, iterative model pruning, and ensemble learning
resulted in improved predictions. We expect that this model can be quickly adopted for COVID-19 screening
using chest radiographs.

INDEX TERMS COVID-19, convolutional neural network, deep learning, ensemble, iterative pruning.

I. INTRODUCTION
Novel Coronavirus disease 2019 (COVID-19) is caused
by the new Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) that originated in Wuhan in
the Hubei province in China and has spread worldwide.
The World Health Organization (WHO) declared the out-
break a pandemic on March 11, 2020 [1]. The disease is
rapidly affecting worldwide population with statistics quickly
falling out of date. As of April 12, 2020, there are over
1.8 million confirmed cases reported globally with over
100,000 reported deaths. Lung disease that causes difficulty
in breathing has been reported as an early indicator along
with hyperthermia in the COVID-19 infected population [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Hugo Albuquerque .

The lung abnormalities caused by non-2019-nCOV viruses
are observed as peripheral or hilar and visually similar to,
yet often distinct from, viral pneumonia and other bacterial
pathogens [2].

Reverse transcription-polymerase chain reaction
(RT-PCR) tests are performed to detect the presence of
the virus and are considered the gold standard to diagnose
COVID-19 infection. However, they are reported to have
variable sensitivity and in some geographic regions may not
be widely available [3]. While not currently recommended
as primary diagnostic tools, chest X-rays (CXRs) and com-
puted tomography (CT) scans have been used to screen for
COVID-19 infection and evaluate disease progression in
hospital admitted cases [3], [4]. While chest CT offers greater
sensitivity to pulmonary disease, there are several challenges
to its use. These include the non-portability, the requirement
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FIGURE 1. Graphical abstract of the proposed study.

to sanitize the room and equipment between patients followed
by a delay of at least an hour [4], the risk of exposing
the hospital staff and other patients, and persons under
investigation (PUIs) to the virus. Although not as sensitive,
portable CXRs are considered as an acceptable alternative
[4] since the PUIs can be imaged in more isolated rooms,
limiting personnel exposure and because sanitation is much
less complex to obtain than with CT.

Automated computer-aided diagnostic (CADx) tools
driven by automated artificial intelligence (AI) methods
designed to detect and differentiate COVID-19 related tho-
racic abnormalities should be highly valuable given the heavy
burden of infected patients. This is especially important in
locations with insufficient CT availability or radiological
expertise and CXRs produce fast, high throughput triage such
as in a mass casualty [5]. Automated approaches, once vali-
dated, have been shown to reduce inter- and intra-observer
variability in radiological assessments [6]. Additionally,
CADx tools have gained immense significance in clinical
medicine by supplementing medical decision making and
improving screening and diagnostic accuracy [7]. These tools
combine elements of radiological image processing with
computer vision for identifying typical disease manifesta-
tions and localizing suspicious regions of interest (ROI).
At present, recent advances in machine learning, particularly
data-driven deep learning (DL) methods using convolutional
neural networks (CNNs), have shown promising performance
in identifying, classifying, and quantifying disease patterns
in medical images. This is particularly true for CT scans
and CXRs [7]. These models learn the hierarchical feature
representations from medical images to analyze for typical
disease manifestations and localize suspicious densities for
ROI evaluation [7].

In this study, we highlight the benefits offered through the
use of an ensemble of iteratively pruned DL models toward
distinguishing CXRs showing COVID-19 pneumonia-related
opacities, from bacterial pneumonia, and normals using pub-
licly available CXR collections. Fig. 1 shows the graphi-
cal abstract of the proposed study. Fig. 2 shows instances
of CXRs being normal, showing bacterial pneumonia, and
COVID-19-related pneumonia.

A custom CNN and a selection of pretrained CNN mod-
els are trained on a large-scale selection of CXRs to learn
CXR modality-specific feature representations. The learned
knowledge then is transferred and fine-tuned to classify the
normal and abnormal CXRs. We leverage the benefits of
modality-specific knowledge transfer, iterative pruning, and

FIGURE 2. CXRs showing (A) clear lungs, (B) bacterial pneumonia
manifesting as consolidations in the right upper lobe and retro-cardiac
left lower lobe, and (C) COVID-19 pneumonia infection manifesting as
peripheral opacities in the left lung.

ensemble strategies to reduce model complexity, improve
robustness, generalization, and inference capability of the DL
model.

The remainder of the manuscript is organized as follows:
Section II discusses prior works. Section III discusses
the datasets and methods used toward modality-specific
knowledge transfer, iterative pruning, and ensemble learn-
ing. Section IV elaborates on the results obtained, and
Section V concludes the study with a discussion on the merits
and limitations of the proposed approach and future work
directions.

II. PRIOR WORK
A. COVID-19 DETECTION
A study of the literature reveals several AI efforts for
COVID-19 screening. The authors of [3] distinguished
COVID-19 viral pneumonia manifestations from that of other
viral pneumonia on chest CT scans with high specificity.
It was observed that COVID-19 pneumonia was found to be
peripherally distributed with ground glass opacities (GGO)
and vascular thickening. The authors of [8] established
a publicly available collection of 275 CT scans showing
COVID-19 pneumonia manifestations and trained a deep
CNN to achieve 0.85 F-score in classifying CTs as nor-
mal or showing COVID-19 pneumonia-related opacities.
The authors of [9] used a customized CNN and pretrained
AlexNet model to classify CXRs as normal or showing
COVID-19 pneumonia with 94.1% and 98% accuracy respec-
tively. The authors of [10] used a ResNet-50 [11] CNN to
classify normal, pneumonia, and COVID-19 viral pneumo-
nia manifestations in CXRs and achieved an accuracy of
98.18 % and F-score of 98.19. CXRs are also commonly
analyzed to diagnose and differentiate other types of pneumo-
nia including bacterial and non-COVID-19 viral pneumonia
[2]. The authors of [12] proposed a custom CNN model
that was designed by combining manual design prototyp-
ing with a machine-driven designing approach to classify
CXRs as normal or showing non-COVID-19 or COVID-19
pneumonia-related opacities with 92.4% accuracy.

B. MODALITY-SPECIFIC KNOWLEDGE TRANSFER
With limited amounts of COVID-19 pneumonia CXR data,
traditional transfer learning strategies offer promise [13]
where the learned feature representations are fine-tuned to
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improve performance. However, unique challenges posed
in the appearance of medical images [6] including high
inter-class similarity and low intra-class variance lead to
model bias and overfitting resulting in reduced perfor-
mance and generalization. These issues can be alleviated
through modality-specific knowledge transfer by retraining
CNN models on a large CXR image collection to learn
modality-specific feature representations. Modality-specific
model knowledge transfer [14] and ensembles [15] have
demonstrated superior disease ROI localization compared to
individual constituent models.

C. MODEL PRUNING
To alleviate burdens from computing resources, DL models
can be pruned to reduce the inference cost and facilitate
deployment in low-resource conditions with no loss or even
improvement in performance. Reed [16] performed a neu-
ral model pruning to decrease computational complexity.
Hassibi et al. [17] deleted network parameters by leveraging
the second derivative term in the Taylor series and improved
model generalization. The authors of [18] found that the
earlier layers in the neural networks have low activations
that can effectively be excluded from the network without
affecting the model performance. They proposed an iterative
optimization method to gradually eliminate the neurons with
the least activations toward reducing the memory and power
requirements and promoting faster model inference. When
applied to medical imaging, the authors of [19] proposed a
genetic algorithm-based pathway evolution strategy to prune
DL models. This resulted in a 34% reduction in the network
parameters and improved themass classification performance
in breast mammograms. A systematic weight pruning strat-
egy [20] was used to prune a YOLO-model [21] based pneu-
monia detector for classifying CXRs as normal or showing
pneumonia-like manifestations using the Radiological Soci-
ety of NorthAmerica (RSNA) [22] CXR collection. However,
there is room for further research in this area.

D. ENSEMBLE CLASSIFICATION
CNNs are non-linear models that learn complex relationships
from the data through error backpropagation and stochastic
optimization, making them highly sensitive to randomweight
initializations and the statistical noise present in the training
data. These issues can be alleviated by ensemble learning
by training multiple models and combining their predictions
where an individual model’s weaknesses are offset by the
predictions of other models. Combined predictions are shown
to be superior to individual models [23]. There are several
ensemble strategies reported in the literature including max
voting, simple and weighted averaging, stacking, boosting,
blending, and others that are shown to minimize the variance
error and improve generalization and performance of CNN
models. Applied to CXRs, the authors of [7], [14], and [24]
leveraged the use of an ensemble of CNN models toward
improving TB detection in CXRs. An averaging ensemble
of pretrained CNNs was used by the authors of [25] toward
improving cardiomegaly detection using CXRs.

TABLE 1. Dataset characteristics. Numerator and denominator denotes
the number of train and test data respectively (N = Normal,
UP = Pneumonia of unknown type, BP = Bacterial (proven)
pneumonia, CP = COVID-19 pneumonia).

III. MATERIALS AND METHODS
A. DATA COLLECTION AND PREPROCESSING
Table 1 shows the distribution of CXRs across different
categories. We used the following four publicly available
CXR collections in this retrospective analysis:

1) PEDIATRIC CXR DATASET [2]
The authors collected from Guangzhou Women and
Children’sMedical Center inGuangzhou, China, the anterior-
posterior (AP) CXRs of children from 1 to 5 years of
age, showing normal lungs, bacterial pneumonia, and
non-COVID-19 viral pneumonia. Expert radiologists curated
the CXR collection to remove low-quality chest radiographs.

2) RSNA CXR DATASET [22]
This multi-expert curated dataset includes images from the
National Institutes of Health (NIH) CXR-14 dataset [26].
The dataset was released for the Kaggle pneumonia detec-
tion challenge, organized jointly by RSNA and NIH. The
collection includes normal CXRs and abnormal images with
non-pneumonia and pneumonia-like opacities. The images
are made available at 1024×1024 pixel resolution in DICOM
format.

3) TWITTER COVID-19 CXR DATASET
A cardiothoracic radiologist from Spain made available a
collection of 134 CXRs with 2K×2K pixel resolution in
JFIF format via Twitter of SARS-CoV-2 positive subjects.
(https://twitter.com/ChestImaging)

4) MONTREAL COVID-19 CXR DATASET [27]
A publicly available periodically updated GitHub repository
that includes COVID-19 CXR cases and other pulmonary
viral disease manifestations in AP, posterior-anterior (PA),
and AP-Supine views. As of April 7, 2020, the repository had
179 CXRs showing COVID-19 pneumonia-related opacities.

We performed patient-level splits of these CXR collections
to allocate 90% for training and 10% for testing at dif-
ferent stages of learning discussed in this study. We ran-
domly allocated 10% of the training data to validate the DL
models. The ground truth (GT) for the test set, comprising
of 27 CXRs showing COVID-19 pneumonia-related opacities
is set by the verification of publicly identified cases from
expert radiologists who annotated the test set.

B. LUNG ROI SEGMENTATION
While mild COVID-19 cases mimic common upper
respiratory viral infections, advanced disease results in
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FIGURE 3. The segmentation approach showing U-Net based mask
generation and Lung ROI cropping.

FIGURE 4. Architecture of the customized CNN model. (I/P = Input,
CONV = Convolution, GAP = Global average pooling, DO = Dropout,
D = Dense with Softmax activation, N = Normal predictions,
A = Abnormal Predictions).

respiratory dysfunction and is the principal cause for
triggering mortality. In developing DL solutions for detecting
the disease, it is important to guard them against irrelevant
features that could severely affect reliable decision-making.
For this study, we performed U-Net based semantic segmen-
tation [28] to segment the lung pixels from the background.
We used a U-Net with Gaussian dropout layers [29] added to
the U-Net encoder. A dropout ratio of 0.2 was empirically
determined and used in this study. Fig. 3 illustrates the
segmentation steps performed in this study.

We used a collection of CXRs with lung masks from
[30] to train the U-Net model to generate lung masks of
256 × 256 pixel resolution for the aforementioned datasets.
We used model checkpoints to monitor its performance and
stored only the best model weights to generate the final lung
masks. These masks then are superimposed on the CXR
images to crop them as a bounding box containing the lung
pixels. The cropped lungs are resized to 256×256 pixel reso-
lution. The lung crops are further preprocessed by performing
pixel rescaling, median filtering for noise removal and edge
preservation, normalization for mean, and standardization for
identical feature distribution. The preprocessed lung crops are
used for model training and evaluation at different stages of
learning discussed in this study.

C. MODELS AND COMPUTATIONAL RESOURCES
We evaluated the performance of a customized CNN and
a selection of ImageNet pretrained CNN models, viz.,
a) VGG-16 [31], b) VGG-19 [31], c) Inception-V3 [32], d)
Xception [33], e) InceptionResNet-V2 [32]; f)MobileNet-V2
[34], g) DenseNet-201 [35], and h) NasNet-mobile [36].

Our customized CNN is a linear stack of strided separable
convolution layers, global average pooling (GAP), and a
dense layer with Softmax activation. Fig. 4 shows the archi-
tecture of the custom CNN used in this study. We used
Dropout to reduce issues due to model overfitting by pro-
viding restricted regularization and improving generalization
by reducing the model sensitivity to the specifics of the
training input [29]. We used strided convolutions that were
shown to improve performance on several visual recognition
benchmarks, compared tomax-pooling layers [37]. Separable
convolutions were used to reduce model parameters [33] and

FIGURE 5. Architecture of the pretrained CNNs. (I/P = Input,
PCNN = truncated model, ZP = Zero-padding, CONV = Convolution,
GAP = Global Average Pooling, DO = Dropout, D= Dense with Softmax
activation, O/P = Output).

improve performance compared to conventional convolution
operations. The number of separable convolutional filters are
initialized to 32 and increased by a factor of two in the
successive convolutional layers. We used 5 × 5 filters and
a stride length of 2 in all convolutional layers. We added a
GAP layer to average the spatial feature dimensions that are
fed into the final dense layer with Softmax activation.

We used the Talos optimization package [38] to optimize
the parameters and hyperparameters of the customized CNN
that include a) dropout ratio, b) optimizer and c) non-linear
activation function. The model is trained and evaluated
with the optimal parameters to classify the CXRs to their
respective categories.

We instantiated the pretrained CNN with their ImageNet
weights and truncated them at the fully-connected layers.
The following layers are added to the truncated model:
(a) zero-padding, (b) a strided separable convolutional layer
with 5 × 5 filters and 1024 feature maps, (c) GAP layer,
(d) Dropout layer with an empirically determined dropout
ratio of 0.5, and (e) final dense layer with Softmax activation.
Fig. 5 shows the customized architecture of the pretrained
models used in this study.

We optimized the following hyperparameters of the
pretrained CNNs using a randomized grid search method
[39]: (a) momentum, (b) L2-regularization, and (c) initial
learning rate of the Stochastic Gradient Descent (SGD) opti-
mizer. The search ranges were initialized to [0.85 0.99],
[1e−10 1e−3], and [1e−9 1e−2] and for the momentum,
L2-regularization, and the initial learning rate respectively.
The pretrained CNNs were retrained with smaller weight
updates to improve generalization and categorize the CXRs
to their respective classes. Class weights were used during
model training to penalize the overrepresented classes to
prevent overfitting and improve performance [40]. We used
model checkpoints to store the best model weights for further
analysis.

D. MODALITY-SPECIFIC TRANSFER LEARNING
AND FINE-TUNING
We performed modality-specific transfer learning where
the customized CNN and ImageNet pretrained models are
retrained on the RSNA CXR collection to learn CXR
modality-specific features and classify the CXRs into
normal and abnormal categories. The RSNA CXR collec-
tion includes normal CXRs and abnormal images contain-
ing pneumonia-related opacities. In this way, the weight
layers are made specific to the CXR modality through
learning the features of normal and abnormal lungs. The
learned knowledge is transferred and fine-tuned to a related
task of classifying CXRs that are pooled from pediatric,
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Twitter COVID-19, and Montreal COVID-19 CXR collec-
tions, respectively, as normal, or showing bacterial pneumo-
nia, or COVID-19 pneumonia-related opacities, to improve
classification performance.

The top-3 performing modality-specific CNNs are
instantiated and truncated at their deepest convolutional
layer and added with the following layers: (a) zero-padding,
(b) a strided separable convolutional layer with 5 × 5 fil-
ters and 1024 feature maps, (c) GAP layer, (d) Dropout
layer and (e) final dense layer with Softmax activation. The
modified models are fine-tuned to classify CXRs as being
normal or showing bacterial pneumonia or COVID-19 viral
pneumonia. Class weights were used duringmodel training to
award higher weights to the under-represented class to reduce
issues due to class imbalance and improve generalization
and performance. Fine-tuning is performed through SGD
optimization and model checkpoints were used to store the
best weights for further analysis.

E. ITERATIVE MODEL PRUNING
We iteratively pruned the fine-tuned models to find the
optimal number of neurons in the convolutional layers to
reduce model complexity with no loss in performance.
We gradually eliminated the neurons with fewer activations
at each time step through iterative pruning and model retrain-
ing. We used the average percentage of zeros (APoZ) [18],
the percentage of zero neuron activations observed with the
validation dataset, as the measure to rank the neurons in each
convolutional layer. We iteratively pruned a percentage of
neurons with the highest APoZ from each layer at each time
step and retrained the pruned model. The process is repeated
until the maximum percentage of pruning is achieved. The
best-pruned model is then selected from the collection of
iteratively pruned models based on their performance with
the test set. The retrained prunedmodel is expected to achieve
similar or better performance than the unpruned models with
reduced model complexity and computational requirements.
The algorithm for iterative pruning performed in this study is
described below:

F. LEARNING ITERATIVELY PRUNED ENSEMBLES
The best performing pruned models are selected to construct
the ensemble to improve prediction performance and gener-
alization as compared to any individual constituent model.
We used several ensemble strategies including max voting,
averaging, weighted averaging, and stacking to combine the
predictions of the pruned models toward classifying CXRs as
normal or showing bacterial or COVID-19 viral pneumonia-
related opacities. For the stacking ensemble, we used a neural
network-based meta-learner that learns to optimally com-
bine the predictions of the individual pruned models. The
meta-learner consisting of a single hidden layer with nine
neurons is trained to interpret the multi-class input from
the top-3 pruned models and a final dense layer outputs
the predictions to categorize the CXRs to their respective
classes.

Algorithm 1 Iterative Pruning
Input: B = {(xi, yi)|xi ∈ X , yi ∈ Y }, pruning percentage
(P), maximum pruning percentage (M)
1. Train and evaluate the base models on B and store the

best model weights
2. while percent pruned (PP) <= M do

a. Calculate the number of filters in each convolu-
tional layer

b. Identify and delete P percentage of filters in each
convolutional layer with the highest average per-
centage of zeros

c. Retrain and evaluate the pruned model on B and
store the best-pruned weights

d. PP + = P
e. Incrementally prune the network, retraining it each

time and save the pruned model
end while

Return: M + 1 number of pruned models

G. VISUALIZATION STUDIES
Visualizing the learned behavior of the DL models is a
debated topic, particularly in medical visual recognition
tasks. There are several visualization strategies reported in
the literature that include (a) visualizing the overall net-
work structure and (b) gradient-based visualization that
performs gradient manipulation during network training.
Gradient-weighted class activation mapping (Grad-CAM)
is a gradient-based visualization method that computes the
scores for a given image category concerning the fea-
ture maps of the deepest convolutional layer in a trained
model [41]. The gradients that are flowing backward are
pooled globally to measure the importance of the weights
in the decision-making process. In this study, we verified
the learned behavior of the pruned models by comparing
salient ROI with consensus GT annotations from experienced
radiologists.

H. STATISTICAL ANALYSES
We analyzed the model’s performance for statistical
significance at different stages of learning. We used con-
fidence intervals (CI) as the measure to analyze the skill
of the CNN models. A shorter CI infers a smaller margin
of error or a relatively precise estimate while a larger CI
allows more margin for error and therefore results in reduced
precision [42]. We computed the 95% CI values for the
AUC at different learning stages to explain the models’
predictive performance. The CI values are computed to be
the Clopper–Pearson exact interval that corresponds to the
separate 2-sided interval with individual coverage probabil-
ities of (0.95)1/2. We used StatsModels version 0.11.0 to
compute CI measures. The codes associated with this study
are made available at https://github.com/sivaramakrishnan-
rajaraman/Iteratively-pruned-model-ensembles-for-COVID-
19-detection-in-CXRs.
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TABLE 2. Optimal values for the parameters and hyperparameters for the
custom and pretrained models obtained through optimization tools
(M = Momentum, ILR = Initial learning rate, L2 = L2-weight decay,
and D = Dropout ratio).

TABLE 3. Performance metrics achieved during modality-specific transfer
learning using the RSNA CXR dataset (Acc. = Accuracy; Sens. = Sensitivity,
Prec. = Precision, F = F-score, MCC = Matthews correlation coefficient,
and Param. = trainable parameters). The values in square brackets show
the 95% CI that are computed to be the Clopper–Pearson exact interval
corresponding to the separate 2-sided interval with individual coverage
probabilities of (0.95)1/2.

IV. RESULTS AND DISCUSSION
The optimal values for the parameters and hyperparameters
obtained for the customized and pretrained CNNs with
the Talos optimization tool and randomized grid search,
respectively, are shown in Table 2.

Table 3 shows the performance achieved through
modality-specific knowledge transfer, by the customized and
pretrained CNNs using the RSNA CXR dataset.

It can be observed that the VGG-16, VGG-19, and
Inception-V3models were more accurate than the other mod-
els under study. The aforementioned models demonstrated
promising AUC values with a shorter CI and hence a smaller
margin of error, thereby offering precise estimates compared
to the other models. This is because the architecture depths
of the VGG and Inception-V3 models are optimal to learn
the hierarchical representations of features from the CXR
data and classify them into normal and pneumonia classes.
Considering the F-score and MCC that give a balanced
measure of precision and recall, the aforementioned models
delivered performance that was superior to the other models.

TABLE 4. Performance metrics achieved by the top-3 modality-specific
knowledge transfer models on the target tasks.

The top-3 performing modality-specific knowledge
transfer models (VGG-16, VGG-19, and Inception-V3) are
instantiated with their modality-specific weights and trun-
cated at their fully connected layers and appended with the
task-specific heads. Table 4 shows the performance achieved
by the task-specific models toward the following classifi-
cation tasks: (a) binary classification to classify CXRs as
normal or COVID-19 pneumonia and (b) multi-class clas-
sification to classify CXRs as normal or as showing bacterial
pneumonia or COVID-19 pneumonia.

It can be observed that for the binary classification task, all
themodels are 100% accurate, however, VGG-16 has the least
number of trainable parameters. For multi-class classifica-
tion, it can be observed that the Inception-V3model wasmore
accurate with a shorter CI for the AUCmetric, signifying that
it has the least margin for error and hence provides amore pre-
cise estimate. Considering F-score and MCC, the Inception-
V3 model delivered superior performance compared to
VGG-16 and VGG-19 models.

For the multi-class classification task, the predictions
of the task-specific models (VGG-16, VGG-19, and
Inception-V3) are combined through several ensemble
methods including max voting, simple averaging, weighted
averaging, and model stacking. We didn’t perform ensemble
learning for the binary classification task since the indi-
vidual models are 100% accurate in classifying CXRs as
normal or showing COVID-19 pneumonia-related opacities.
Table 5 shows the performance achieved for the multi-class
classification with different ensemble strategies. It can be
observed that a simple average of the models’ predictions
is more accurate with a shorter CI for the AUC metric,
signifying a smaller margin of error and therefore, higher
precision, compared to other ensemble methods. Considering
the F-score and MCC, the averaging ensemble outper-
formed other ensemble strategies in classifying CXRs as
normal, or as showing bacterial pneumonia or COVID-19
viral pneumonia.

For the multi-class classification task, we iteratively
pruned the task-specific models (VGG-16, VGG-19, and
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TABLE 5. Performance metrics achieved by the unpruned models through
different ensemble strategies for the multiclass classification task.

TABLE 6. Performance metrics achieved by the best iteratively pruned
models and compared with the baseline unpruned models from Table 4
(U-unpruned and P-pruned).

Inception-V3) by removing 2% of the neurons with the
highest APoZ in each convolutional layer at a given time
step and retrained the pruned model to evaluate its perfor-
mance on the validation set. We used model checkpoints to
store the best-pruned model that gave a superior performance
with the validation set. The process is repeated until the
maximum pruning percentage of 50% is reached. We then
evaluated the performance of all the prunedmodels on the test
set. The pruned model that achieved superior performance
with the test set is used for further analysis.

Table 6 shows a comparison of the performance achieved
by the pruned models to that of the baseline, unpruned
task-specific models shown in Table 4. It can be observed
that the pruned models are more accurate than their unpruned
counterparts. Considering the F-score and MCC metrics,
the pruned models are found to deliver superior perfor-
mance than the unpruned models. It is interesting to note
that the performance improvement is achieved with a sig-
nificant reduction in the number of parameters. As can
be seen, the number of parameters in the pruned VGG-
16 model reduced by 46.03% compared to its unpruned
counterpart. Similarly, the number of trainable parameters
reduced by 16.13% and 36.1% for the pruned VGG-19 and
Inception-V3 models, respectively, with the added benefit of

FIGURE 6. Grad-CAM Visualizations showing salient ROI detection by
different pruned models. (A) CXR showing COVID-19 viral
pneumonia-related opacities with GT annotations, (B) VGG-16 pruned
model, (C) VGG-19 pruned model, and (D) Inception-V3 pruned model.
Bright red corresponds to the pixels carrying higher importance and
hence weights for categorizing the test sample to the COVID-19 viral
pneumonia category.

performance improvement in terms of accuracy, F-score, and
MCC metrics, compared to their unpruned counterparts.

Fig. 6 shows the results of performing Grad-CAM
visualizations to localize the salient ROIs used by the dif-
ferent pruned models to classify a sample test CXR into the
COVID-19 viral pneumonia category. The visualizations are
compared with consensus GT annotations provided by the
expert radiologists. The predictions of the pruned models are
decoded for the test sample. Two-dimensional heat maps are
generated in bright red, which corresponds to the pixels car-
rying higher importance and hence weights for categorizing
the test sample to COVID-19 pneumonia infected category.
Distinct color transitions are observed for varying ranges
of pixel importance toward making the predictions. Salient
ROIs are localized by superimposing the heat maps on the
input sample CXR. It is observed that the pruned models
precisely localize the salient ROI. This underscores the fact
that the pruned models have learned the implicit rules that
generalize well and conform to the experts’ knowledge about
the problem.

Table 7 shows a comparison of the performance metrics
achieved with the different ensemble strategies for the
unpruned and pruned models toward classifying the CXRs as
normal or showing bacterial pneumonia, or COVID-19 viral
pneumonia.

While performing weighted averaging ensemble for both
unpruned and pruned models, the predictions are awarded the
importance based on their F-score and MCC measures that
offer a balanced measure of precision and sensitivity. From
Table 6, it can be observed that the pruned and unpruned
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TABLE 7. Comparing the performance metrics achieved with the pruned
and unpruned model ensembles from Table 4.

FIGURE 7. Confusion matrix obtained with the weighted-average pruned
ensemble.

Inception-V3 model delivered superior performance, fol-
lowed by VGG-19 and VGG-16 models. In this regard, we
assigned weights of 0.5, 0.3, and 0.2 to the predictions of
Inception-V3, VGG-19, and VGG-16 models, respectively.
It can be observed that the weighted averaging ensemble
of the predictions of the pruned models delivered superior
performance in all aspects. Fig. 7 and Fig. 8 shows the confu-
sion matrix and AUC curves, respectively, obtained with the
weighted-averaging pruned ensemble.

The 95% CI for the AUC metric has the shortest error
margin with a more precise estimate than that obtained with
the other ensemble methods. Considering the F-score and
MCC, the weighted averaging ensemble outperformed the
other ensemble strategies in classifying CXRs as normal,
bacterial pneumonia, or COVID-19 viral pneumonia.

FIGURE 8. ROC curves showing micro/macro-averaged and class-specific
AUC obtained with the weighted-average pruned ensemble.

V. CONCLUSION
The COVID-19 pandemic has had an enormously negative
impact on population health and national economies world-
wide. Early diagnosis has often been suboptimal and serolog-
ical tests have not been widely available. The opportunity to
utilize CXRs as part of the diagnostic approach could add an
important and nearly universally available tool to the battle
against COVID-19 or other respiratory viruses that might
emerge in the future. In the current study, we demonstrate
that this can be done by applying ensemble DL to findings
seen in CXRs.

Modality-specific transfer learning performed with a
large-scale CXR collection with a diversified data distribu-
tion helped in learning CXR modality-specific features. The
learned feature representations served as a good weight ini-
tialization and improved model adaptation and generalization
compared to ImageNet pretrained weights, when transferred
and fine-tuned for a related CXR classification task.

Iterative pruning of the task-specific models and selection
of the best performing pruned model not only improved
prediction performance on the test data but also significantly
reduced the number of trainable parameters. This is because
there are redundant network parameters (neurons) in a deep
model that do not contribute to improving the prediction
performance. If these neurons with lesser activations can be
identified and removed, it results in a faster and smaller model
with similar or improved performance than the unpruned
models. This would facilitate deploying these models on
browsers and mobile devices.

We further improved the performance by constructing
ensembles of the pruned models. By empirically evaluating
the performance of the pruned models and awarding weights
based on their predictions, we observed that the weighted
averaging ensemble of the pruned models outperformed the
other ensemble methods.

We performed visualization studies to validate the
pruned model localization performance and found that the
pruned models precisely localized the salient ROI used in
categorizing the input CXRs to their expected categories.
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We observe that combined use of CXR modality-specific
knowledge transfer, iterative model pruning, and ensem-
ble learning reduced prediction variance, model complexity,
promoted faster inference, performance, and generalization.
However, the success of this approach is controlled by two
broad factors: (i) dataset size and inherent variability, and
(ii) computational resources needed for successful deploy-
ment and use. With dataset size, we specifically refer to the
minimum number of topically relevant images, in this case,
CXRs with viral pneumonia that are distinct from bacte-
rial and normal images, that are needed to build confidence
into the ensemble. With computational resources, we recog-
nize the training time and memory constraints required for
practicable deployment. However, low-cost GPU solutions,
high-performance computing (HPC), and cloud technology
would address the feasibility in this regard. Future studies
could explore visualizing and interpreting the learned behav-
ior of the pruned model ensembles and their application
to other screening situations like COVID-19 detection and
localization in 3D CT scans, etc. At present, we expect that
the proposed approach can be quickly adapted for detection
of COVID-19 pneumonia using digitized chest radiographs.
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